[CONTRIBUTION FROM THE CHEMICAL LABORATORY OF THE UNIVERSITY OF UTAH]

Ultraviolet Spectra of Substituted Acetophenones and Benzoic Acids

W. J. HORTON AND DONALD E. ROBERTSON¹

Received December 17, 1959

An empirical calculation of the maxima of 2,5-disubstituted acetophenones and benzoic acids is compared with the experimentally found values. A simple additive relationship holds since the steric factor of the substituent is contained in the constants used and since no strongly coupling (ortho-para vs. meta) substituents have been included.

In a previous article² the empirical method of Cram³ was employed to calculate the maxima of the first primary and the secondary band of 2,3and 2,5-hydroxy-, methoxy- or methyl-substituted acetophenones. In the present work these and similar calculations for other acetophenones are compared with the experimentally obtained values (Table I).

The excellent correlation between such calculated values and experimental values suggests a constant contribution by the substituents to each band, with the exception of two cases. Certain features inherent in the examples in Table I are responsible for such a simple treatment.

(a) No substituents are located at the position para to the electronegative acetyl group. Such ortho-para vs. meta directing groups are reported to couple strongly and give rise to $\Delta m\mu's$ which are products of the individual contributions rather than the sum.⁴ Further, it has been proposed⁵

that chromophores from strong coupling (I or II) explain the similarity of the trisubstituted benzene (I.Z = ortho-para directing group) spectra to that of the disubstituted benzene (I.Z = H).

(b) No examples in Table I involve 2,3-substituents. Such cases show hypsochromic effects due to distortion of the substituents out of the plane of the benzene ring.² The steric effects in the monosubstituted acetophenones (Table I) may be seen by comparing (in each band) the bathochromic shifts in the *meta* isomer relative to the *ortho* isomer. *o*-Hydroxyacetophenone is the exception

and hydrogen bonding is no doubt responsible. Such steric effects in monosubstituted acetophenones are contained in the individual $\Delta m\mu$'s used to calculate the maxima of the 2,5-disubstituted acetophenones. It seems obvious from Table I that no interaction occurs between the 2- and 5-substituents so as to alter the steric portion of the increment ascribed to the ortho group. In the more widely deviating secondary band⁶ of 2-halo-5methyl- (or methoxy) acetophenones, the lack of agreement is directionally correct for an increased carbon-halogen bond distance due to the 5-substituent. Further, the deviation is greater with 2halo-5-methoxy-7 than with 2-halo-5-methylacetophenones. Such changes (III) in double bond character in the excited state resulting in changed steric conditions have been suggested.⁸ A form such as IV (Z = halogen) might give rise to a greater carbon-halogen bond distance and a resulting hypsochromic effect.

(c) No 2,5-substituents are available in Table I which oppose *ortho-para-* and *meta-*directing groups. Such cases ought to give rise to strong coupling and nonadditivity of the individual contributions.⁴

An examination of the data in Table I suggests assignment, for these cases, of the first primary band to transitions to excited states analogous to $I,^{s}$ with the secondary band arising from transitions to states such as V. Substituent groups influence the positions of both bands by their influence on the π -electrons of the benzene ring. The ortho and meta halogens (Table I) raise the excited state

⁽¹⁾ A part of the Doctoral Dissertation of Donald E. Robertson, 1959.

⁽²⁾ W. J. Horton and J. T. Spence, J. Am. Chem. Soc., 80, 2453 (1958).

⁽³⁾ D. J. Cram and F. W. Crantz, J. Am. Chem. Soc., 72, 595 (1950).

⁽⁴⁾ L. Doub and J. M. Vandenbelt, J. Am. Chem. Soc., 69, 2714 (1947).

⁽⁵⁾ L. Doub and J. M. Vandenbelt, J. Am. Chem. Soc., 77, 4535 (1955).

⁽⁶⁾ In our hands, wide steric deviations in 2,3-disubstituted acetophenones are seen in the secondary band.²

⁽⁷⁾ There is some uncertainty about the experimental values found for 2-bromo-5-methoxyacetophenone due to the lack of supporting analytical data. The identity of the compound is assured by the method of synthesis and an analysis of the crystalline oxime.

⁽⁸⁾ W. F. Forbes and W. A. Mueller, Can. J. Chem., 34, 1340 (1956).

 $2,5-(HO)_2$

		Primary Band			Secondary Band				
		mμ	ε 🗙 10	$\Delta m \mu^b$	m	u	$\epsilon imes 10^{-3}$	$\Delta m \mu^b$	
Acetophen	one ^c	244	12.0		27	8	1.15	••	
2-Fluoro		237	9.7	2 -7	28	2.5	1.55	4	
3-Fluoro		238.5	8.9	1 - 5	28	3.5	1.45	5	
4-Fluoro ^d		242	11.5	-2					
2-Chloro		239	5.6	5 -5	284		0.802	6	
3-Chloro		239	4.9	8 5	28	8	0.605	10	
4-Chloro ^d		249	16.0	5					
2-Bromo		~235.5°	4.6	1 -8	28	5	0.844	7	
3-Bromo		242 5	9.0	2 -1	28	9.5	1.08	11	
$4-\operatorname{Bromo}^d$		253	16.0	ĝ					
2-Iodo		$\sim 245^{\circ}$	4 7	9 1	294.5		1.02	16	
4-Indo ^d		262	16.0	18	_0_0				
2-Methyl		242	8.5	-2	283		1.25	5	
3-Methyl		240	10.0	5	289		1 20	11	
4. Methyl		250	15.0	8	~278		0.850	0	
2-Methovy	<i>,9</i>	202	11.0	2	30	305		27	
2 Methours		240	70	5	30	7	2.4	29	
A Mothowy		249	15 5	33	00	•	2.1	20	
2. Hudrovy		210.5	10.0	7	32	7	32	49	
2 Hydroxy ⁱ		251.0	10.0	8	31	1	5.0	33	
A Hudroxy		252.5	10.0	32	51	•	0.0	00	
1 -11y010xy		270	10.0			•			
			2,5-Disubstit	TUTED ACETOPHEN	IONES				
		Experi-				Experi-			
	Calcd.	mental,		Deviation,	Calcd.	mental		Deviation,	
	mμ	$m\mu$	$\epsilon imes 10^{-3}$	mμ	mμ	mμ	$\epsilon imes 10^{-3}$	mμ	
2-Cl-5-CH ₃	244	243	5.25	-1	295	290	0.904	-5	
2-Cl-5-CH ₃ O ^j	244	~ 240.5	4.97	-4	313	302.5	1.80	-11	
2-Br-5-CH ₃	240	~ 239	5.25	-1	296	291	0.10	-5	
2-Br-5-CH_3O^k	241	~ 242	5.26	1	314	298	1.63	-16	
2,5-(CH ₃)2 ¹	247	245	9.90		294	296	1.80	2	
, , ,,-		251	8.70	-1 (mean)					
2-CH ₃ O-5-F	241	243	7.09	2	310	315	4.20	5	
2-CH ₃ O-5-Cl	241	244	7.25	3	315	317	3.28	2	
2-CH ₃ O-5-Br	243	239	7.59	-4	316	316	2.87	0	
2-CH ₃ O-5-CH ₃ ^c	251	251	7.80	0	316	318	3.50	2	
2,5-(CH ₃ O)2 ^c	251	250	6.30	-1	334	336	3.90	2	
2-HO-5-F	246	248.5	8.44	2	332	335	4.20	3	
2-HO-5-Cl	246	248	6.94	3	337	338	3.49	1	
2-HO-5-Br	250	246	7.45	-4	338	339.5	3.30	1	
2-HO-5-CH3 ^c	256	255	11.0	-1	338	338	3.50	0	
2-HO-5-CH ₃ O ^c	256	256	7.4	0	356	355	3.8	-1	

TABLE I Ultraviolet Absorption Maxima of Substituted Acetophenones^a

^a The solvent was 95% ethanol unless otherwise noted. Other ultraviolet data on these acetophenones appears in the literature. Attention is directed here only to the Ref. under d below. ^b $\Delta m\mu =$ wave length of substituted acetophenone – corresponding wave length of acetophenone (244 or 278 m μ). Half m μ have been dropped. ^c Ref. 2, in 1:1 (vol.) ethanol-water; the acetophenone values 243 and 279 m μ (ethanol) are given by E. A. Braude and F. Sondheimer, J. Chem. Soc., 3757 (1955). ^d W. F. Forbes and W. A. Mueller, Can. J. Chem., 35, 488 (1957). ^e Indicates an inflection. ^f In hexane or ethanol, E. A. Braude, F. Sondheimer, and W. F. Forbes, Nature, 173, 117 (1954). ^g R. A. Morton and A. L. Stubbs, J. Chem. Soc., 1347 (1940). ^h In 0.1N hydrochloric acid, maximum 2% methanol; band also at 219.5 m μ (ϵ , 1060). ⁱ N. A. Valyashko and A. E. Lutsky, J. Gen. Chem. U.S.S.R., 21, 1029 (1951). ^j Also $\lambda_{max} 219 m\mu$, ϵ , 18500. ^k Repeated attempts failed to yield acceptable analytical values for carbon, hydrogen, and bromine. ⁱ E. A. Braude and F. Sondheimer, Ref. c.

-2

360

364

3.92

4

(primary band) relative to acetophenone itself but lower the excited state that is responsible

259

256.5

6.88

for the secondary band. The inductive effect of the halogens, F>Cl>Br>I, is in the order of the $\Delta m\mu$'s (Table I) of the *ortho* increments for the primary band (-7, -5, -1, 1) and similarly of the *meta* increments (-5, -5, -1, --). Such an order is the inverse of that expected on the basis of size and consequent steric interaction with the acetyl group. The comparison of even *ortho*-fluoro- *vs. meta*-fluoroaceto-phenone indicates some steric effects in the *ortho*

	Primary Band					Secondary Band				
	mμ	• • ×	10~3 l	οge	$\Delta m \mu$	m	μ ε	$\times 10^{-3}$	log ε	$\Delta m \mu$
 Benzoic acid ^b	228		4	4.02		273			2.94	
o-Fluoro	224	9	.27		-4	275		1.51		2
m-Fluoro	225	5.5 10	.4		-2	275	.5	1.60		2
p-Fluoro	228	3.5 10	.2		0					
o-Chloro	~ 229) 5	$.00^{d}$		1	278			2.88°	5
m-Chloro	229) 8	.98		1	280	.5	0.975		7
$p ext{-Chloro}^d$	234	l 15	.0		6					• •
o-Bromo	~ 222	2 7	. 61		-6	280	(0.867		7
m-Bromo	222	2 9	. 11		-6	281		0.888		8
p-Bromo ^d	238	3.5 16	.0		10		•			
o-Iodo	233	$3^{d,e}$ 7	.00		5	288		1.24		15
m-Iodo						286		1.09		13
p-Iodo	252	2^d 17	.0		24		•			
$o ext{-Methyl}^d$	228	3 5	.00		0.	279			2.86^{c}	6
m-Methyl ^d	232	29	. 00		4	279			3.01°	6
p-Methyl ^d	236	3 14	.0		8		•			• •
$c ext{-Methoxy}^d$	230) 6	. 00		2	291			3.43^{c}	18
$m ext{-Methoxy}^d$	230) 7	.00		2	293			3.39°	20
$p ext{-Methoxy}^d$	249) 14	.0		21		•			
o-Hydroxy ^d	236	37	. 50		8	307			3.57°	34
m-Hydroxy ^d	236	36	. 00		8	301			3.39°	28
$p ext{-Hydroxy}^d$	251	l 12	.5		23	• •	•			••
			2,5-Disubs	TITUTED	BENZOI	ic Acids				
		Experi-					Experi-			
	Calcd.	mental	$\epsilon imes 10^{-3}$	Dev	riation	Calcd.	mental	$\epsilon \times 10$)-3 I	Deviation
2-F-5-CH₃O					•••	295	299.5	2.99		4
$2-Cl-5-CH_3$						284	285	1.11		1
2-Cl-5-CH₃O	231	233	9.03		2	298	298.5	2.05		0
2-Br-5-CH ₃	226	~ 228	8.26		2	286	287	1.12		1
$2\text{-Br-}5\text{-}CH_3O$	224	~ 232	8.84		8	300	298	1.93		-2
2-Br-5-HO	230	~ 230	7.81		0	308	300	1.96	i	-8
2-CH₃O-5-F	228	229	6.13		1	293	301	3.62	1	8
$2-CH_{3}O-5-Cl$	231	232	9.01		1	298	304	2.93		6
$2-CH_{3}O-5-Br$	224	231	9.64		7	299	304.5	2.66	5	5
2-HO-5-F	234	231	6.29		-3	309	312	4.39)	3
2-HO-5-Cl	237	232.5	7.52		-4	314	314	3.64	Ł	0
2-HO-5-Br	230	230.5	8.05		0	315	314	3.40)	-1

TABLE II^a Ultraviolet Absorption Spectra of Substituted Benzoic Acids

compound. The primary band $\Delta m\mu$'s for the other substituents (Table I) at the ortho and meta positions reflect their influence on the π -electrons, giving rise to slightly bathochromic $\Delta m\mu$'s.

The increments in the secondary band (a) are positive with respect to acetophenone itself (b) increase when the substituent is shifted from the ortho to the meta position (c) are large, relative to the corresponding $\Delta m\mu$ for the primary band and (d) appear, in the case of the para isomer to be shifted onto the primary band. A comparison of the respective meta-secondary- $\Delta m\mu$'s vs. para-primary- $\Delta m\mu$'s (F, 5, -2; Cl, 10, 5; Br, 11, 9; CH₃, 11, 8; CH₃O, 29, 33; HO, 33, 32) seems to indicate that the chromophore to which the secondary band is mainly ascribed (such as VI) has been shifted onto the 1,4-axis (such as I.Z = H) to which the primary band is assigned. The zero increment in the secondary band for *p*-methylacetophenone is similarly accounted for on this basis. It should also be noted that a secondary band reappears in 4methoxyacetophenones which contain an additional methoxy group (2,4-dimethoxy-, 302.5 m μ , ϵ -8190; 3,4-dimethoxy-, 302.5 m μ , ϵ , 8100 and 2,4,5, trimethoxyacetophenone, 327 m μ , ϵ , 8380).⁹

In a similar treatment of benzoic acids (Table II) several divergent cases arise. These cases of nonadditivity of the 2- and 5-substituent $-\Delta m\mu$'s (such as 2-bromo-5-hydroxybenzoic acid) give rise to large negative deviations in the secondary band which suggest the similar behavior of this type of compound in the acetophenone (secondary band).

The secondary band positive deviations in the case of 2-methoxy-5-halobenzoic acids have their

^a The solvent was 95% ethanol unless otherwise noted. ^b H. E. Ungnade, E. E. Pickett, L. Rubin, and E. Youse, J. Org. Chem., 16, 1318 (1951). ^c C. M. Moser and A. T. Kohlenberg, J. Chem. Soc., 804 (1951). ^d In absolute ethanol, W. F. Forbes and M. B. Sheratte, Can. J. Chem., 33, 1829 (1955). ^e Missing in our examination of the spectra.

⁽⁹⁾ Unpublished data by W. J Horton.

					Analyses, %				
		B.P. °(mm.)			Calcd.		Found		
Acetophenone	Yield, $\%^a$	Found	Reported	Formula	C	H	С	H	
2-F	41	94.5(34.5)	$80-85(16)^{b}$						
3-F	40	190(630.0)	$81(9)^{c}$						
Oxime, m.p.	43.6 - 44.5			C_8H_8NOF	62.74	5.27	62.98	5.31	
2-Cl	71	119-120 (26)	$85-87.5 \ (5.5)^d$						
Oxime, m.p.	104 - 105		$105 - 106^{d}$						
3-Cl	37	120(27)	$80(2,5)^{e}$						
Oxime, m.p.	85.5-88	· · ·	88-897						
2-Br	54	136(28)	$131 - 135(20)^{g}$						
Oxime, m.p.	127.5 - 129		129 ^h						
3-Br	49	155(47)	$102-106(4)^{g}$						
Oxime, m.p.	100.6 - 101.6			C _s H _s NOBr	44.88	3.77	44.87	3.85	
2-I	70	103(1.5)	$112(4)^{i}$						
Oxime, m.p.	129.5 - 136	· · /	130-1321						
2-Cl-5-CH3	42	67 (0.65)	245.8-246 (760.1) ^j						
Oxime, m.p.	115.8 - 117.4		$100 - 101^{k}$	C ₉ H ₁₀ NOCI	58.86	5.49	59.13	5.48	
2-Cl-5-CH ₃ O	63	116(3)		$C_9H_9O_2Cl$	58.55	4.91	58.61	-4.99	
Oxime, m.p.	114.4 - 117.2			C ₉ H ₁₀ NO ₂ Cl	54.14	5.05	54.26	5.08	
2-Br-5-CH ₃	54	83(0.45)		C ₉ H ₉ OBr	50.73	4.26	51.24	4.48	
Oxime, m.p.	128.8 - 131.5	, , ,		C ₉ H ₁₀ NOBr	47.39	4.42	47.38	4.58	
2-Br-5-CH ₃ O	60	105(0.65)		$C_9H_9O_2Br$	47.19	3.96	47.49	4.16	
Oxime, m.p.	130.8 - 132.2	. ,		$C_9H_{10}NO_2Br$	44.28	4.13	44.38	4.17	
2-CH ₃ O-5-F	30 <i>1</i>	135(23.5)	$128(15)^m$						
2-CH ₃ O-5-Cl	67^{l}	162(25)	$108(2)^{n}$						
Oxime, m.p.	157.9 - 159.3			$C_9H_{10}NO_2Cl$	54.14	5.05	54.16	5.05	
2-CH ₃ O-5-Br	44	128.5(2.2)		$C_9H_9O_2Br$	47.18	3.96	46.10	4.06	
Oxime, m.p.	159.6 - 161.8			$C_9H_{10}NO_2Br$	44.28	4.13	43.98	4.22	
2-HO-5-F	$59^{m} { m m.p.}$	56.4 - 57.6	57^m						
2-HO-5-Cl	96° m.p.	52.2 - 53.6	54 ^p						
2-HO-5-Br	44 ^q m.p.	$57.4 extrm{}59.2 extrm{}2 extrm{}59 extrm{}2 extrm{}5 extrm{}5$	56^{p}						
2,5-(HO) ₂	59 m.p.	204.6 - 205.4	202-203*						

TABLE III Acetophenones

^a From the benzoic acid according to Ref. 11. ^b W. Borsche and M. Wagner-Roemmich, Ann., 546, 273 (1941). ^c D. P. Evans. V. G. Morgan, and H. B. Watson, J. Chem. Soc., 1167 (1935). ^d H. G. Walker and C. R. Hauser, J. Am. Chem. Soc., 68, 1386 (1946). ^e N. J. Leonard and J. N. Boyd, Jr., J. Org. Chem., 11, 405 (1946). ^f A. B. Sen and D. D. Mukerji, J. Indian Chem. Soc., 28, 161 (1951); Chem. Abstr., 46, 935a (1952). ^e R. L. Lutz et al., J. Org. Chem., 12, 617 (1947). ^h W. Borsche and W. Scriba, Ann., 541, 283 (1939). ^f W. S. Rapson and R. G. Shuttleworth, J. Chem. Soc., 487 (1941). ^j C. F. H. Allen and M. P. Bridgess, J. Am. Chem. Soc., 49, 1846 (1927). ^k F. Mayer and W. Freund Ber. 55, 2049 (1922). ^l By methylation (methyl sulfate) of the corresponding hydroxy compound. ^m Ng. Ph. Buu-Hoï, D. Levit and Ng. D. Xuong. J. Org. Chem., 19, 1617 (1954). ^a A. B. Sen and P. M. Bhargava. J. Indian Chem. Soc., 26, 287 (1949), Chem. Abstr., 44, 3197i (1950). ^o By Fries Rearrangement of the corresponding phenol acetate. ^p K. Kindley and H. Oelschlager, Chem. Ber., 87, 194 (1954). ^e By bromination of o-hydroxyacetophenone. ^r G. C. Amin and N. M. Shah, Org. Syntheses, Coll. Vol. III, 280 (1955).

counterpart in 2-methoxy-5-fluoroacetophenone (and decrease in 2-methoxy-5-chloro- or 2-methoxy-5-bromoacetophenone so as to be inconspicuous). All of these secondary band deviations suggest interaction between 2,5-substituents resulting in changed bond distances and consequent nonadditivity due particularly to the group at the 2position.

In the primary band, the positive deviation of 2methoxy-5-bromobenzoic acid is consistent with the above discussion; however, the positive primary deviation of 2-bromo-5-methoxybenzoic acid is not explained. In summary, the benzoic acids follow the pattern of the acetophenones but are less regular in their agreement with prediction.

EXPERIMENTAL¹⁰

The ultraviolet absorption maxima were obtained on a Beckman Model DU Spectrophotometer: the material used was that submitted for analysis for carbon and hydrogen in the case of unreported compounds or material submitted to a similar regimen in the case of a known compound. The acetophenones were obtained from the corresponding benzoic acid via the acid chloride and sodio malonic ester¹¹ except for several cases, noted in Table III.

⁽¹⁰⁾ The melting points of materials prepared for the determination of spectra or for ultimate analysis are corrected.

⁽¹¹⁾ A. L. Wilds and L. W. Beck, J. Am. Chem. Soc., 66, 1692 (1944).

BENZOIC ACIDS										
<u> </u>		Melting	Melting Point			Analyses				
		Found			Cal	Calcd.		Found		
Benzoie Acid	Yield,ª %	(corrected)	Reported	Formula	С	Н	С	H		
<i>o</i> -F	55^{b}	124.4-126.3	126.5°							
m-F	55^{o}	122.4 - 124.4	124 ^c							
p-F	50	185.4 - 187.2	186^{d}							
m-Cl	46	155.8 - 156.8	154.25^{e}							
o-Br	32	149.1 - 150.3	148^{f}							
<i>m</i> -Br	50	154.9 - 157.3	152-1539							
o-I	h	161.6 - 163.0	$162.5 - 163^{i}$							
m-I	15^{j}	186.8 - 188.4	$187 - 188^{k}$							
2-F-5-CH ₃ O	36 ¹	146.3 - 148.3		$C_8H_7O_3F$	56.47	4.15	56.56	4.18		
Amide		122.4 - 125.0		$C_8H_8NO_2F$	56.80	4.77	56.96	4.66		
2-Cl-5-CH ₃	75^m	148.5 - 149.7		$C_8H_7O_2Cl$	56.32	4.14	56.88	4.06		
Amide		186.8 - 187.6		C_8H_8NOCl	56.65	4.75	56.95	4.85		
2-Cl-5-CH ₃ O	21	173.4 - 174.9	172.5-173 ⁿ							
2-Br-5-CH3	81^m	137.6 - 139	135°							
Amide		197.9 - 198.5		C_8H_8NOBr	44.88	3.77	45.09	3.84		
2-Br5-CH ₃ O	89 ^p	159.4 - 160.1	160^{n}							
2-Br-5-HO	q	184.2 - 185.6	185 (dec.)'							
Benzoate		198.7 - 199.9		C14H9O4Br	52.36	2.83	52.67	3.08		
$2-CH_{3}O-5-F$	78°	88.0-89.0	89*							
2-CH ₃ O-5-Cl	36 ^t	97.6 - 98.8	$96.2 - 97.2^{u}$							
2-CH ₃ O-5-Br	72"	119.8 - 121	$120.0 - 120.8^{u}$							
2-HO-5-F	83 ^w	178.8 - 180.4	180"							
2-HO-5-Cl	h	173.8 - 175.1	$173 - 174^{x}$							
2-HO-5-Br	h	167.5 - 169.5	$165.4 - 166.2^{u}$							

TABLE IV

^a By potassium permanganate oxidation of the appropriate methyl compound, except for those cases which are noted. ^b By Schiemann reaction from the ethyl aminobenzoate. ^c J. F. J. Dippy and F. R. Williams, J. Chem. Soc., 1466 (1934).
 ^d G. Schiemann and W. Winkelmüller, Org. Syntheses, Coll. Vol. II, 299 (1943). ^c D. H. Andrews, G. Lynn, and J. Johnston. J. Am. Chem. Soc., 48, 1286 (1926). ^J J. Meisenheimer, P. Zimmermann, and U. V. Kummer, Ann., 446, 213 (1926). ^g B. Flürscheim and E. L. Holmes, J. Chem. Soc., 131, 474 (1928). ^h Eastman Kodak Company material recrystallized repeatedly. ⁱ H. G. Rule, W. Hay, A. N. Numbers, and T. R. Paterson, J. Chem. Soc., 131, 183 (1928). ^f Overall, by diazotization of ^aH. G. Rule, W. Hay, A. N. Numbers, and T. R. Paterson, J. Chem. Soc., 131, 185 (1928). ^b Overall, by diazotization of m-toluidine and permanganate oxidation. ^k V. H. Wallingford and P. A. Krueger, Org. Syntheses, Coll. Vol. II, 353 (1943). ^b The necessary 4-fluoro-3-methylanisole, b.p. 169.5–170° (633.3 mm.), Anal. Calcd. for C₈H₉OF: C, 68.55; H, 6.47. Found: C, 68.71; H, 6.53, was prepared in 30% yield via the Schiemann reaction from 4-methoxy-2-methylaniline. ^m By diazotization of 2-amino-5-methylbenzoic acid. ⁿ G. B. Bachman and G. M. Picha, J. Am. Chem. Soc., 68, 1599 (1946). ^e W. Borsche and A. Herbert, Ann., 546, 277 (1941). P By permanganate oxidation of the corresponding aldehyde. By chromic acidacetic acid oxidation (25% yield) of the benzoate of the aldehyde followed by saponification (75% yield). 'P. H. Beyer, Rec. trav. chim., 40, 621 (1921). By sodium hypobromite oxidation of the corresponding acetophenone as reported; Ng. Ph. Buu-Hoï, D. Levit, and Ng. D. Xuong, J. Org. Chem., 19, 1617 (1954). ^t By permanganate oxidation of the corresponding acetophenone. ^u A. S. Hussey and I. J. Wilk, J. Am. Chem. Soc., 72, 830 (1950). ^{*} By permanganate oxidation of the corresponding aldehyde. * By demethylation as in footnote s. * G. Wittig, Ber., 57, 88 (1924).

Acknowledgment. The assistance of the University Research Committee and a grant from the National Science Foundation are gratefully acknowledged. We are indebted also to Dr. George Rice, Dr.

Irwin Schmeltz, and Mr. Edward G. Paul for assistance.

SALT LAKE CITY 12, UTAH